SOLUTION for Pre-Calculus 11 HW 4.5 Discriminant Nature of the Roots, \(D = b^2 - 4ac \)

1. Determine the nature of the roots [ie: Determine how many x-intercepts each quadratic equation has]

<table>
<thead>
<tr>
<th>Equation</th>
<th>Nature of Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + 5x + 6 = 0)</td>
<td>There are two distinct real roots</td>
</tr>
<tr>
<td>(12x^2 + 7x - 3 = 0)</td>
<td>There are two distinct real roots</td>
</tr>
<tr>
<td>(-2x^2 - 7x + 5 = 0)</td>
<td>There are two distinct real roots</td>
</tr>
<tr>
<td>(4x^2 = 13x - 8)</td>
<td>There are two distinct roots</td>
</tr>
<tr>
<td>(x(7 - 8x) = 10)</td>
<td>No real roots</td>
</tr>
<tr>
<td>(x(x + 2) = 6 - (x - 3)(2x + 1))</td>
<td>There are two distinct roots</td>
</tr>
</tbody>
</table>

2. Solve each of the following inequalities:

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 < 16)</td>
<td>(-4 < x < 4)</td>
</tr>
<tr>
<td>(x^2 - 25 > 0)</td>
<td>(x < -5) or (5 < x)</td>
</tr>
<tr>
<td>(x(3 - x) < 0)</td>
<td>(x = 0, x = 3)</td>
</tr>
<tr>
<td>(x(3 - x) < 0)</td>
<td>(x < 0) or (3 < x)</td>
</tr>
</tbody>
</table>

3. Determine the value of “k” so that the equation has two equal roots:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + kx + 25 = 0)</td>
<td>(k = \pm 10)</td>
</tr>
<tr>
<td>(kx^2 + 4x + 1 = 0)</td>
<td>(k = 2, 8)</td>
</tr>
<tr>
<td>(0.5x^2 + 3kx + (3k - 4) = 0)</td>
<td>(k = \frac{4}{3}) or (k = \frac{-2}{3})</td>
</tr>
</tbody>
</table>
4. Determine the value of “k” so that the equation has two different roots:

 a) \(x^2 - kx + 12 = 0 \)
 - To have two distinct roots, the discriminant must be greater than 0.
 \(b^2 - 4ac > 0 \)
 \(k^2 - 4(12) > 0 \)
 \(k^2 - 48 > 0 \)
 \(k < -4\sqrt{3} \text{ or } 4\sqrt{3} < k \)
 - Draw a number line and use test points:

 b) \(2kx - kx - 1 = 0 \)
 - To have two distinct roots, the discriminant must be greater than 0.
 \(b^2 - 4ac > 0 \)
 \(k^2 - 4(1) > 0 \)
 \(k^2 - 4 < 0 \text{ or } 4 < k \)
 - So as long as \(k \) is between 0 and 4, the quadratic equation will have two distinct roots

5. Determine the value of “k” so that the equation has no real roots:

 a) \(x^2 - kx - 24 = 0 \)
 - To have no real roots, the discriminant must be less than 0
 \(b^2 - 4ac < 0 \)
 \(k^2 - 4(-24) < 0 \)
 \(k^2 + 96 < 0 \)
 - The left side is always positive, because \(k^2 \) is always positive.
 - SO, no matter what “k”, the equation will always have 2 distinct roots

 b) \(2kx - kx + 8 = 0 \)
 - To have no real roots, the discriminant must be less than 0
 \(b^2 - 4ac < 0 \)
 \(k^2 - 4(8) < 0 \)
 \(k^2 - 32k < 0 \)
 \(k(k - 32) < 0 \)
 - \(0 < k < 32 \)
 - if “K' is between 0 and 32, the equation will not have any roots

 c) \(x^2 - 3kx - (3k - 8) = 0 \)
 - To have no real roots, the discriminant must be less than 0
 \(b^2 - 4ac < 0 \)
 \((-3k)^2 - 4(-3k + 8) < 0 \)
 \(9k^2 + 12k - 32 < 0 \)
 \((3k + 8)(3k - 4) < 0 \)
 - \(-8 < k < 4 \)
 - \(-\frac{8}{3} < k < \frac{4}{3} \)

6. In order for a quadratic function to be factorable, what value must the discriminant be equal to? Explain:

 This is the quadratic formula: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). In order for a quadratic equation to be factorable, both roots must be either an integer or a fraction. Can’t have a radical. So that means the discriminant \(b^2 - 4ac \) needs to be either 0 or a perfect square.

 If the quadratic equation \((x-2)^2 + k = 0\) has two distinct real roots, then what is the range of “k”? (Multiple choice, circle one) Justify your answer.

 a) \(k > 2 \)
 b) \(k < 0 \)
 c) \(k \leq 0 \)
 d) \(k \leq 4 \)

 \(x^2 - 4x + 4 + k = 0 \)
 \(16 - 4(1)(4 + k) > 0 \)
 \(16 - 4(4 + k) \)
 \(16 - 16 - 4k > 0 \)
 \(-4k > 0 \)
 \(k < 0 \)