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Section 4.3 Factoring Difference of Squares and Cubes

Difference of squares: a-b =(a+b)(a—b)

Difference and Sums of Cubes: x4y’ =(x+y)(x2 —xy+y2) Xy :(x—y](f +xy+y2)

1. Factor each of the following expressions:
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2. For what value of “n” does (22007 — Q006 )(2199? - 2'996) =2"?
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3. The number 2001 can be written as a difference of squares, x” — y1 where “x” and “y” are positive integers

in four different ways. What are the f&ur possible ways?
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4. Two numbers are such that their difference, their sum and their product are to one anotheras 1:7:18. u'I'he

product of the two numbers are: ) &b yar b, anls [©) ::7. e
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5. The number 2005 can be written in the form of a” —b*, where “a” and “b” are positive integers less than

1000 in exactly one way. What is the value of a’+b>?
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6. Solve for “a” and “b” in the expression: 1+ J_ a +\/_](b \/_)

Oo—2=\ b—a=2 ‘*ar *’bﬁ@’ o242

o, = b2 = b —2 +G-d)Jo= \+ 28
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7. Given that “p” is a prime number, solve for “x”: 1000 —8x" = S(p)(Sp + 2)

\((\1{\ - % %"= ¥p (< 2
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8. Suppose that v’ —4 = 50(n 2) and “n” is not equal to 2. What is the value of “n”?

("R D) = 50 (n-L)
ntz = SO
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9. Find as many prime numbers “p” as you can so that the expression 5p+1 is a perfect square. How many
prime numbers like this do you think there are? Prove that there are only this many primes.
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10. The positive difference of two perfect squares is 32. What is the largest possible value of the sum of the two
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11. How many ordered pairs (m,n) o witfm>n,}have the property that their squares differ by

967 List out all possible pairs.
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12. Given that “p” is a prime number and the expression 2003p + 16 is a perfect square, what is the lowest
possible value of “p”? (st )
© 2003p T~
2582 p -\
s = (e 4 (e

13. An annulus is the region between two concentric circles. The concentric circles in the figure have radii “b”
and “c”, with b > c. Let OX be a radius of the larger circle, let XZ be tangent to the smaller circle at Z, and

let OY be the radius of the larger circle that contains Z. Let g = XZ, d = YZ, and e = XY. What is the area of the
annulus?

(A) ma® (B) wb? (C) =c? (D) wd? (E) me?
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14. If @’ — b’ = 64, what is the smallest possible values of (a+5)?
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15. There are four different positive integers “a”, “b”, “c” , and “d” such that the equation is true:
a +b =c’ +d* =1729. What s the values of a + b + ¢ + d?
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16. What is the sum of the (decimal) digits of 10° —8?
———
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17. What are both pairs of integers (x,y) for which 4" -615=1x"
27"‘_5(1— = b\s

(224x)(22- Q) = 6\
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18. Show tifat if the positive integer “n” is a multiple of 3, then 7" — 6" is a multiple of 127.
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20 Show that 2" + 3" s divisible by 35. 3 — 21

(G,

‘B2 IR - ]

21 (Challengnd “v" be two-digit integers such that “y” is obtained by reversing the digits of “x”. The
integers “x” and “y” satisfy x° —_1,’2 = m’ for some positive integer “m”. What is the value of x + y+m?
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