Block:

Math 11 Principles: Chapter 4 Review Assign:

1. Section 4.1: Quadratic Formula & Solving Trinomials: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ a. The Q.F. is for finding the roots of a 2^{nd} degree trinomial (Quadratic)

Q#1) Using the Quadratic Formula find the roots to 2 decimal places: (Hint: 2 answers each) $a)3x^2-4x+1=0$ $b)2x^{2}+6x-3=7x^{2}-2x$

Answer:	Answer:
c)3a(2a-6)=8	$d)2(2x-1)^{2}+9(2x-1)+7=0$

Answer:

Answer:_

2. Section 4.2: Nature of the Roots $D = b^2 - 4ac$

Discriminant	Nature
$b^2 - 4ac > 0$	2 distinct roots (2 different roots)
$b^2 - 4ac = 0$	2 equal roots (Double root, 1 distinct root)
$b^2 - 4ac < 0$	No real roots (None)

Q#2) Using the discriminant, indicate the number of roots in each equation. $a)3x^2-4x+1=0$ $b)2x^{2}+6x-8=7x^{2}-2x$

Answer: Answer:___ Q#3) For each of the following trinomials, determine what values of "k" will give the indicated number of solution. Draw a number line to illustrate your answer.

	2 Distinct Solutions	2 Equal Solutions	No Real Solutions
a) $4x^2 + kx + 6 = 0$			

b) $6x^2 - 10x + k = 0$		
c) $(2k+1)x^2-3x+5=0$		
d) $(5k-1)x^2 - 4kx + 1 = 0$ (Hard)		

3. <u>Section 4.3: Remainder Theorem:</u>

The remainder theorem is a shortcut for finding the remainder when dividing a function f(x) by a binomial (x-k). All you need to do is substitute "k" for "x" into f(x)

Q#4)Use the remainder theorem to find the remainder when f(x) is divided by the indicated binomial (Hint: Use Long Division/Synthetic Division to check your answer) *a*) $f(x) = 3x^4 - 2x^3 + 6x^2 - 6x + 11 \div x - 5$

b) $f(x) = 2x^3 + x^2 - 5 \div 2x - 1$

Answer:_____

Answer:_____

c) $f(x) = 12x^3 + 6x^2 - 5x + 3 \div 2x - 3$

Answer:_____

Q#5) Using the remainder theorem, find the missing constant "c" with the given information:.

a) When $2x^3 - cx^2 + 5x - 11$ is divided by x - 2, the remainder is 13.

Answer: _______ b) When $27x^4 - 18x^3 + 4cx^2 - 6x + 2$ is divided by 3x - 2, the remainder is $\frac{50}{3}$.

Answer:_____

4. Section 4.4: Factor Theorem:

The process to convert into Factored Form requires the following steps: (R.S.F.)

- 1. Use the **<u>Remainder Theorem</u>** to find the first root
- 2. Use the root obtained and <u>Synthetic Division</u> to divide f(x) and find the quotient.

This way, you break up the function into smaller parts ** (If the quotient has a higher degree than 2, then repeat steps 1 and 2, until the quotient is a trinomial)

3. <u>Factor</u> the quotient, using either the Q.F., BUM, or Criss-Cross Method.

Q#6) Use the factor theorem to factor each of the following functions: a) $f(x) = 2x^3 - 3x^2 - 8x + 12$ b) $f(x) = 2x^4 - 15x^3 + 36x^2 - 35x + 12$

Answer:_____

Answer:_____

c) $f(x) = 20x^3 + 17x^2 - 40x + 12$

Answer:_____

⁽c) Copyright All Rights Reserved to Homework Depot at www.BCMath.ca DO NOT COPY

5. <u>Section 4.5 Solving Polynomial Inequalities:</u>

Q#7) Solve each inequality and graph the solution on a number line: a)(x+1)(2x-1)(x-5) > 0 $b)(x-2)(x-5)x^2 \ge 0$

Answer:______ c) $6x^3 - x^2 - 5x + 2 > 0$

Answer: d) $9x^3 + 39x^2 + 55x + 25 < 0$

Answer:_____

Answer:_____

6. Section 4.6: Solving Rational Inequalities:

Q#8) Solve each inequality and graph on a number line: (Express your answer as a radical if necessary)

 $a)\frac{-4}{x+2} = x+7 \qquad \qquad b)\frac{2}{x-2} = -2(x-5)$

Answer:	_ Answer:
c) $\frac{2}{11-3x} > x-2$	$d)\frac{x-4}{(x+1)(x-3)} + \frac{x-5}{(x-2)(x-3)} < \frac{2}{x+1}$ (Difficult)

Answer:_____

Answer:_____

7. Section 4.7: Solving Radical Equations and Inequalities:

Q#9) Solve for x: (Keep your answers as a radical if possible) $a)\sqrt{2x+5} = -2x+4$ $b)\sqrt{1-2x} = \frac{1}{2}x+3$

Answer:

Answer:

Solve each inequality and graph the solution on the number line.

 $a)\sqrt{3x+5} > \sqrt{\frac{1}{2}x+3}$

 $b)\sqrt{4-\frac{1}{2}x} < \sqrt{2x+3}$

Answer:

Answer:_____

8. Section 4.8: Solving Absolute-Value Equations and Inequalities: Solve for x:

 $b)\left|\frac{3}{2}x+3\right| = \frac{-3x-6}{2}$ a)|2x+1| = 3-x

Answer:

Answer:_____ Solve each inequality and graph the solution on the number line. b)|x+1|-2<-|x-3|+2a) $|x-1| + \frac{8-4x}{3}| < 8$

Answer:_____

Answer:_____